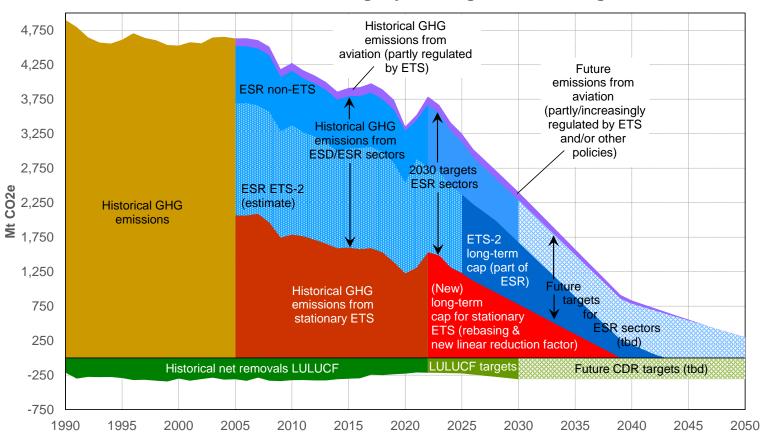


Keeping the lights on: Is a Coal exit by 2030 still feasible?

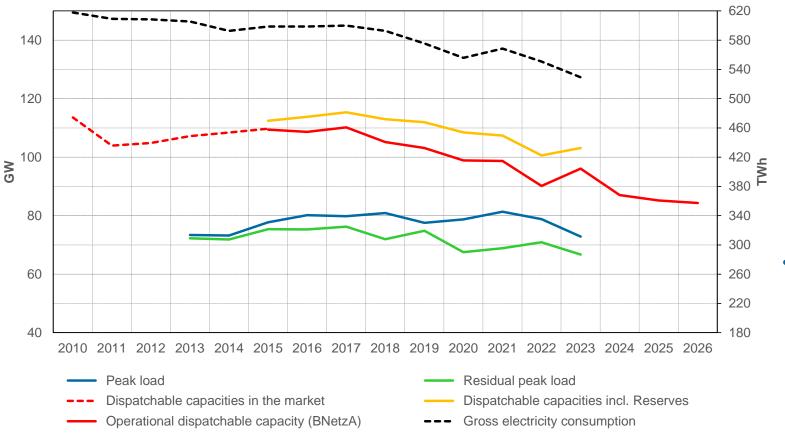

Montel German Energy Day 2024

Dr. Felix Chr. Matthes

Berlin, 24th April 2024

European Union climate policy architecture Implications for coal-fired power generation

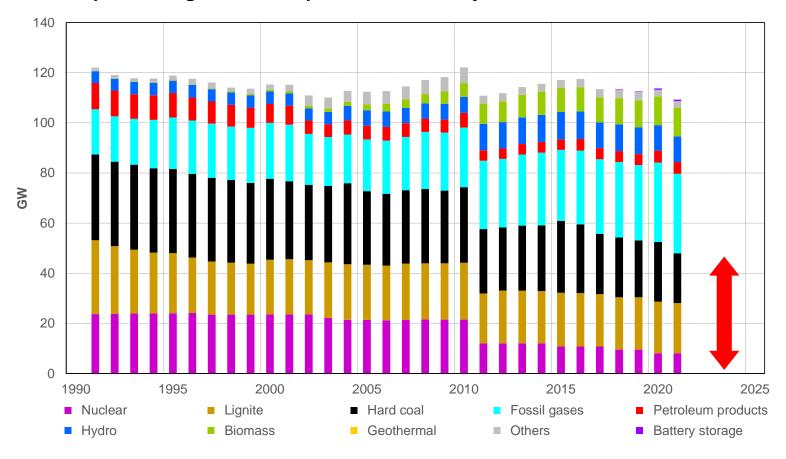
EU-27 historical emissions and legally binding reduction targets



Revision of the EU ETS

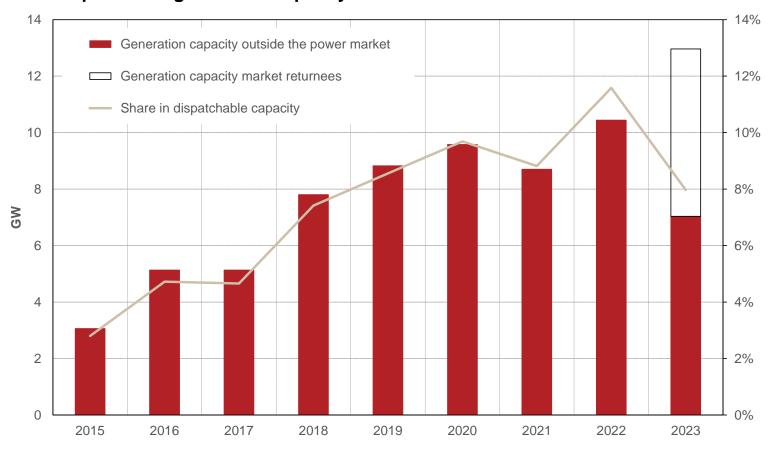
- in 2038 for the last time emission allowances will be brought to the market for energy and energy-intensive industries (EU ETS)
- even with some left-overs from the Market Stability Reserve (MSR) the industry must reach climate neutrality before 2040
- no (new) emission allowances for ETS-2 (road transport, buildings etc.) will be made available after 2042
- What does that mean for coal phase-out (in DE and EU)
 - regulatory- and market-driven
 - power plants inside and outside (reserves) the market

German power system Peak load, residual peak load, dispatchable capacity and electricity consumption


Key determinants for system adequacy

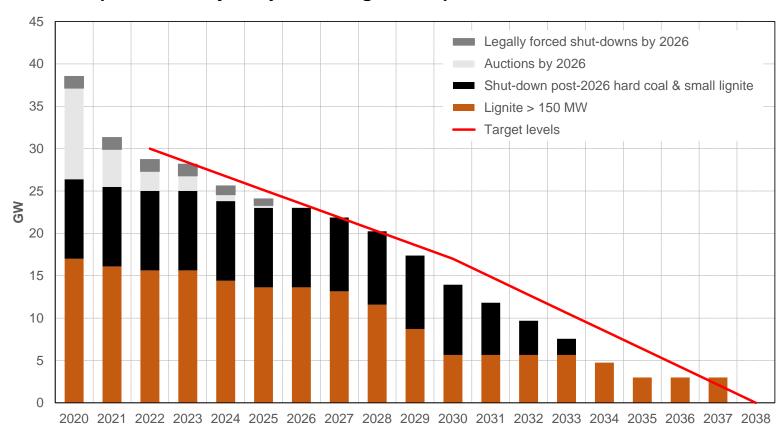
- Historical trends (by now) ...
 - Decreasing electricity consumption trends in general
 - Increasing peak load (except crisis periods)
 - Slightly decreasing residual peak load
 - Major decrease of dispatchable capacity (cushioned by reserves outside the market)
- ... but different patterns to come
 - Increasing electricity consumption, peak load and residual peak load
 - Massive decrease of dispatchable capacity
 - Significant uncertainties on timing

German power system Dispatchable generation capacity


Dispatchable generation capacities in Germany

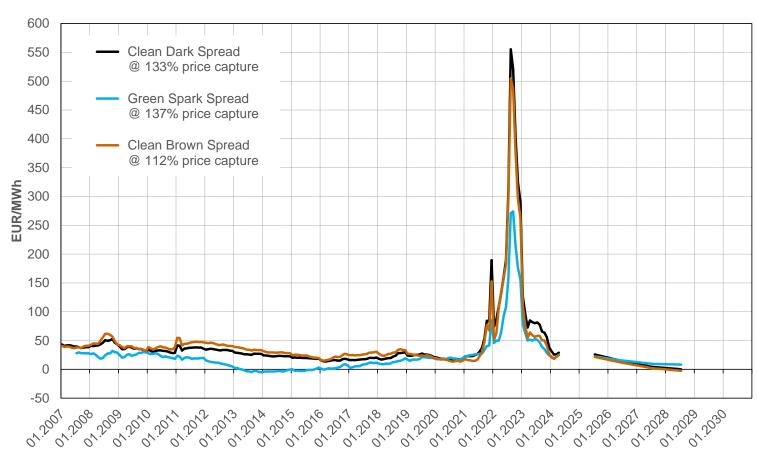
- Rather small changes in dispatchable capacities in the past
 - Relatively slow decommissioning of coal
 - Stepwise shut-down of nuclear
 - Some increase in natural gas (CHP) and biomass
- Major changes in 2022/2023/2024
 - Last phase of nuclear phase out (by 15th April 2023)
 - First major coal shut-downs
 (after a phase of regulatory enabled returns to the market)
- Major changes to come
 - Legally forced & market-driven shut-downs of coal plants
- Significant capacities hold in reserves (outside the market)

German power system Dispatchable generation capacity outside the market


Dispatchable generation capacity outside the market

- (Still) existing market design paradigm in Germany
 - Energy-only market 2.0
 - Safeguarded by reserves outside the market (planned to never come back)
 - Total capacity of reserves amounts to approx. 13 GW (13% of dispatchable capacities)
 - Never come back promise was broken (for a certain period of time)
- Fresh look on market design and capacity remuneration mechanisms since 2023/2024
 - Power plant strategy
 - Some CRM from 2028 onwards

German power system Coal phase-out trajectory by law


Coal phase-out trajectory according to coal phase-out law

- Coal phase-out act as the legal basis
 - Results from the Coal Commission 2019
 - Deal between the Federal and the North-Rhine Westphalian government and RWE 2022
- Essentially three elements
 - Negotiated coal phase-out compensation for lignite (approved for RWE, challenged by DG COMP for LEAG in Eastern Germany)
 - Tenders for shut-down of hard coal (and small lignite) plants
 - Legally forced shut-downs without compensation
- Legal end of coal by 2038

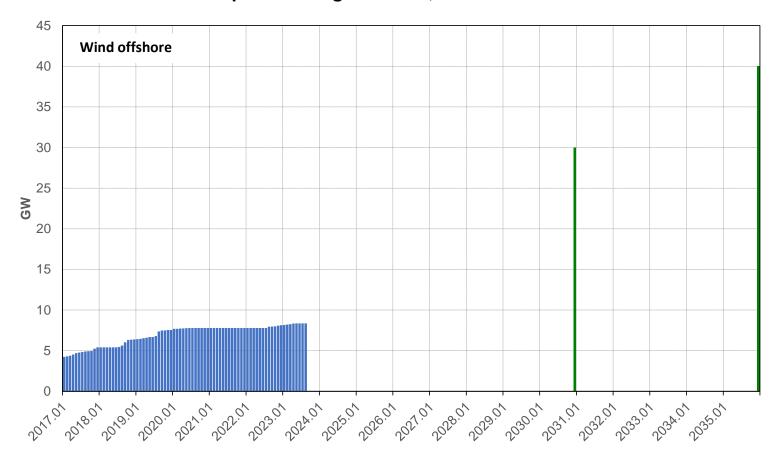
German power system Market driven coal phase-out

Power generation spreads by November 2023 / January 2024 / March 2024

- Market-driven coal phase-out as the reality
 - Contribution margins of hard coal and lignite plants (as well as some natural gas plants) on a strong decreasing trend after the energy market turbulences in 2022 and 2023
 - Contribution margins tend to shrink massively by the end of the 2020ies (based on energy market futures and observed capture rates)
 - Situation got massively worse during the last 6 months
- General trend is relatively clear but uncertainties remain
 - Fuel market trends
 - CO2 market trends

German power system System adequacy assessments

German and European system adequacy assessments


	2023	2025	2028	2030	2033
_	GW				
Scenario A (Central Reference)*	33	28	33	48	57
Scenario B (Sensitivity)**	33	25	31	42	50
		Mittelwert I	LOLE (P50 - P95***	i) [h/a]	
Scenario A	-	2,16 (0 - 9)	3,55 (0 - 15,8)	4,28 (1 - 17)	8,07 (2 - 45,8
Scenario B	-	7,35 (2 - 31,8)	12,26 (5 - 53)	11,19 (3 - 54,4)	21,63 (11 - 89,8

Anmerkungen: * substanzielle Reaktion der Investitionen auf Preisspitzen. ** geringere Reaktion der Investitionen auf Preisspitzen. - *** P50 beschreibt das 50. Perzentil, P95 das 95. Perzentil

- Significant losses of dispatchable power generation capacities in the 2020ies
- Additional natural gas (hydrogen-fuelled/-ready) capacities needed by end of 2020ies or early 2030ies
 - Range of 20 to 30 GW (net additions) as a robust basis
 - Depending on many assumptions (residual peak load, cross-border contributions, weather year etc.)
- With these capacity additions different LOLE effects have been modelled

German power system Historical trends for renewables and actual targets in the law

Historical trends and expansion targets for PV, wind onshore and wind offshore

Sources: BNetzA, Öko-Institut

- EEG 2023 and WindSeeG 2023 lay down very ambitious expansion targets and tender volumes for PV, onshore wind power and offshore wind power.
 - PV: currently high monthly expansion figures, target achievement very likely
 - Onshore wind power: expansion figures clearly behind schedule, bottleneck beyond the scope of the Renewable Energy Sources Act, achievement of targets rather unlikely
 - Offshore wind power: large commissioning waves foreseeable, target achievement ambitious but possible

Coal phase-out by 2030 Conclusions

- Coal phase-out will occur around 2030
 - Regulatory- and increasingly market-driven
 - No major differences between hard coal and lignite
- System adequacy as a key major determinant, roll-out of renewables of less importance for the coal phase-out
- Some coal power plants might by hold outside the market after they left the market
 - Major restrictions exist on technology, labor force and fuel stockpiling
- Upcoming (and late) revision of the market design paradigm is an important issue
 - Power Plant Strategy (10.5 GW gas-fired new-built) in the final phase
 - Options paper on CRMs by summer and process towards CRM implementation afterwards (enabling another 10 to 20 GW gas-fired/hydrogen-ready capacities and/or equivalents)
 - Some reserves maintained?
- Hopefully no worst-case scenario
 - Public support for loss-making coal-fired power plants in the late 2020ies/early 2030ies

Thank you very much

Dr. Felix Chr. Matthes
Energy & Climate Division
Berlin Office
Borkumstrasse 2
13189 Berlin, Germany
f.matthes@oeko.de
www.oeko.de
twitter.com/FelixMatthes

