Intermittency and grid challenges (over the coming winter)

Christian Todem (Head of System Development APG)

28th September 2023
Agenda

Security of supply after the energy crisis of 2022: Recap of the crisis year 2022 and where we stand today

Main challenges for secure grid operation and security of supply: (i) Delayed grid investments, (ii) lack of holistic approaches and (iii) developments in neighboring countries are central to guaranteeing security of supply in the long-run
Security of supply after the energy crisis of 2022

- Overview: European process of short-term and long-term resource adequacy monitoring
- Short recap of the energy crisis and current outlook on security of supply
Recap of the energy crisis 2022
Situation before winter 2022/23 (Jan-Sep)

Causes of the energy crisis: situation in the EU by September 2022

Unavailability of nuclear power (esp. in France) meant a reduction appr. 120 TWh
- (prolonged) maintenance of French nuclear reactors, less efficiency because of higher-than-usual temperature in French rivers

Unavailability of hydropower meant a reduction of approx. 50 TWh (dry spells in spring/summer)

The energy crisis triggered by huge insecurity about gas supply:
Additional demand for gas for electricity production in time of scarcity led to electricity prices sky-rocketing

Additionally, there were large insecurities regarding conventional generation units.

Source:
https://www.bruegel.org/dataset/national-energy-policy-responses-energy-crisis; Comparison: Jan-Sep 2021 vs. Jan-Sep 2022
Monitoring Security of Supply closely ...
Overview of different monitoring initiatives at APG and within TSO community

Pan-European processes and SoS monitoring by TSOs

ENTSO-E seasonal outlook

- **Winter Outlook** is published yearly in autumn for the coming winter
- **Summer Outlook** is published yearly in spring for the coming summer

APG „stress test“ for the crisis 2022

Due to the tense situation during the crisis, an additional stress test was carried out in 2022 to calculate additional sensitivities with an Austrian perspective by APG

Long-term outlook: ERAA

Continuous monitoring of long-term security of supply over a period of 10 years into the future is carried out by ENTSO-E with strong involvement of APG experts

Source: ERAA 2022
Winter outlook during the crisis 22/23
Security of Supply (SoS) was closely monitored and necessary measures were prepared

ENTSO-E Winter Outlook 2022/23

- **Projected demand**
- **5% demand reduction**
- **Nuclear reduction (FR,FI,SE)**
- **Coal reduction (DE,PL)**

In all three scenarios, no major risk for SoS in Austria was predicted.

Critical situation for Austria only if gas supply <80% - this was analysed in depth in additional APG “stress test”

Additional APG “stress test” with additional scenarios

<table>
<thead>
<tr>
<th>Combined scenario</th>
<th>Combined scenario - critical</th>
<th>Combine scenario – highly critical</th>
</tr>
</thead>
<tbody>
<tr>
<td>DE</td>
<td>-</td>
<td>- 2 GW</td>
</tr>
<tr>
<td></td>
<td>reference</td>
<td>demand +5%</td>
</tr>
<tr>
<td></td>
<td>no gas limit</td>
<td>gas limit (80%)</td>
</tr>
</tbody>
</table>

+ Additional critical assumptions for all scenarios (reduced nuclear production in France, no export from Poland, reduction of coal generation in Finland,...)

Only in highly critical scenarios (low probability) were significant risks for SoS predicted.

An overall mild winter and improved gas storage conditions meant that there were no major interruptions for Austrian SoS
Winter outlook for the upcoming winter 2023/24

Overall, preconditions for the coming winter are greatly improved - some examples:

- Gas storage levels in Austria is at its highest level since 2019 (near full capacity).
- France (after becoming a net importer for the first time in 42 years) is exporting electricity again.
- Hydro generation in Austria improved y-o-y by approx. 5 TWh.

Outlook for upcoming winter 2024:

- Situation for security of supply is greatly improved when compared to last year.
- ENTSO-E winter outlook is expected to be published in November – APG experts heavily involved.
- The “great unknown” are climatic conditions – a prolonged cold spell could pose risks.
- Gas supply routes through Ukraine /eastern Europe still present a possible risk in the future.

... but going back to “business as usual” is not an option!
Main challenges for secure grid operation and security of supply:

- Delayed investments in transmission infrastructure as one of the main challenges for security of supply
- Key driver for Austrian security of supply will be developments in neighbouring countries
- The solution will require coordinated and holistic planning along the whole value chain
Decarbonising the electricity sector is only one aspect

To achieve decarbonisation, deep electrification of the energy system will be needed

The challenge

<table>
<thead>
<tr>
<th>Energieträger</th>
<th>2019 Endenergieverbrauch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fossile</td>
<td>122 TWh</td>
</tr>
<tr>
<td>Erdöl</td>
<td>66,6%</td>
</tr>
<tr>
<td>Erdgas</td>
<td>55</td>
</tr>
<tr>
<td>Kohle</td>
<td>5</td>
</tr>
<tr>
<td>Erneuerbare</td>
<td>49</td>
</tr>
<tr>
<td>Brennbare Abfälle</td>
<td>19</td>
</tr>
<tr>
<td>Fernwärme</td>
<td>5</td>
</tr>
<tr>
<td>Biomasse</td>
<td>5</td>
</tr>
<tr>
<td>Strom</td>
<td>64</td>
</tr>
<tr>
<td>davon</td>
<td>52 (75%)</td>
</tr>
</tbody>
</table>

Fact is: more than 200 TWh (~ 2/3) of the Austrian energy system still have to be decarbonised

Milestones and key indicators

Milestone 2030

Until 2030, the electricity sector in Austria will have to be fully decarbonised (national yearly balance; this implies a range of RES expansion of +27 TWh EAG and +39 TWh ÖNIP)

Milestone 2040

Until 2040, Austria aims to have reached full decarbonisation of the economy. This implies that > 200 TWh still need to be substituted (currently: oil, gas and coal)

Necessary Investments

According to one recent estimate by the WKO, investments of approximately 70 billion euro are needed until 2030. As an indicator, roughly twice that amount is required to decarbonise the economy until 2040.

Source: BMK 2020, Statistik Austria 2020, E-Control 2020, APG 2020; Energiemasterplan WKO, values in TWh
Main challenges to be addressed today
Missing transmission grid causes significant and avoidable costs for consumers

Meeting demand 2022 in APG control area

Grid unable to meet market requirements

Congestion between DE/AT due to bidding zone split

Price spread AT / DE [€/MWh]

<table>
<thead>
<tr>
<th>Year</th>
<th>Spread</th>
</tr>
</thead>
<tbody>
<tr>
<td>2019</td>
<td>2.4</td>
</tr>
<tr>
<td>2020</td>
<td>2.7</td>
</tr>
<tr>
<td>2021</td>
<td>10.0</td>
</tr>
<tr>
<td>2022</td>
<td>26.0</td>
</tr>
</tbody>
</table>

Ca. 1,800 million €
(at 70 TWh demand)

Missing transmission grid infrastructure causing additional costs of 2,500 Mio. €

Significant residual load that has to be covered by imports and fossil generation units

Max. weekly demand

4.0 GW 3.8 GW 5.7 GW

Ca. 700 million €
Key for **technical challenges** ahead: Massive increase in capacity
Peak capacity sets the threshold for grid development

Direct comparison between hydro power, wind and solar PV shows:

In order to produce the same amount of energy... ... almost **twice the capacity for wind** and **3.5 times the capacity for PV** are needed

Generation from wind and solar PV have fundamentally different characteristics than generation from (flexible) hydro or gas. This effect is greatly enhanced by additional electricity demand through electrification of the economy!

Source: APG, E-Control
Current dynamics in PV expansion
Intermittency will soon represent a huge challenge

PV-expansion is booming in Austria

→ Currently, around 150 MW additional PV capacity in Austria per month
→ June 2023: installed capacity roughly 5 GW
→ Current peak demand roughly 11 GW

System integration of PV urgently required

→ Excess generation/demand to be managed via TSO grid
→ Curtailment of hydro and wind necessary already today

Increase in PV infeed to transmission grid

→ Negative/very low prices a reality
→ Market induced reduction of hydro & wind generation
Outlook 2040: Results of the integrated Austrian Network Plan (ÖNIP)

No convergence between intermittent RES and demand

Providing flexibility to the system is the most important challenge ahead

No temporal or geographical convergence between generation and demand

Providing flexibility to the system will be key – electricity is the most important energy carrier of the future (balancing measures take place every 2 seconds)

Massive grid expansion required to integrate RES into the system

Short-term and seasonal shifting of energy essential – power-to-gas and batteries are no-regret measures that must be built urgently

[1] Demand projection 2030+ based on TYNDP 2020 NT 2030 (90 TWh) | RES expansion based on ÖNIP Transition Szenarios (UBA)
Outlook 2030+: Quantifying the challenges from APG perspective
Necessary grid expansion based on ÖNIP and APG projections

APG calculation confirmed by ÖNIP

Massive challenges until 2030+

<table>
<thead>
<tr>
<th></th>
<th>Today</th>
<th>Tomorrow (ÖNIP 2030+)</th>
<th>Increase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grid length [380 kV]</td>
<td>1.200 km (in 60 years)</td>
<td>+ 1.200 km (in 13 years)</td>
<td>+100%</td>
</tr>
<tr>
<td>UVP Verfahren [environmental impact]</td>
<td>2 (max.)</td>
<td>5-6 (in parallel)</td>
<td>+200%</td>
</tr>
<tr>
<td>Substations</td>
<td>65</td>
<td>+45</td>
<td>+70%</td>
</tr>
<tr>
<td>Transformers</td>
<td>95</td>
<td>+110</td>
<td>+120%</td>
</tr>
</tbody>
</table>

Massive challenges ahead and urgent action required!
APG project “zusammEn2040”: Improved network planning through utilizing state-of-the-art planning tools and modelling approaches

ESM

European Energy System Model

Electricity system of the future will be planned based on an optimised vision of the total system needs

Input for APG-processes
- Strategic Network Development
- NEP, ÖNIP
- TYNDP
- ERAA
- ...

Determination of infrastructure needs for grid planning
Electricity, methane, hydrogen, production, storage, ...

Stakeholder process
- Vision stakeholder 1
- Vision stakeholder 2
- Vision stakeholder 3
- ...

One unique vision per stakeholder
Interactive results visualisation on a transparent basis and possibility to publicly disseminate results

Identification of no-regret measures

APG project “zusammEn2040”

Vision stakeholder 1
Vision stakeholder 2
Vision stakeholder 3
...

Strategic Network Development
NEP, ÖNIP
TYNDP
ERAΑ
...

Electricity system of the future will be planned based on an optimised vision of the total system needs

Input for APG-processes

- Strategic Network Development
- NEP, ÖNIP
- TYNDP
- ERAΑ
- ...

Determination of infrastructure needs for grid planning
Electricity, methane, hydrogen, production, storage, ...

Stakeholder process
- Vision stakeholder 1
- Vision stakeholder 2
- Vision stakeholder 3
- ...

One unique vision per stakeholder
Interactive results visualisation on a transparent basis and possibility to publicly disseminate results

Identification of no-regret measures

APG project “zusammEn2040”

Vision stakeholder 1
Vision stakeholder 2
Vision stakeholder 3
...

Strategic Network Development
NEP, ÖNIP
TYNDP
ERAΑ
...

Determination of infrastructure needs for grid planning
Electricity, methane, hydrogen, production, storage, ...

Stakeholder process
- Vision stakeholder 1
- Vision stakeholder 2
- Vision stakeholder 3
- ...

One unique vision per stakeholder
Interactive results visualisation on a transparent basis and possibility to publicly disseminate results

Identification of no-regret measures
Final issue: Turning to our favourite neighbour ...
Germany increasingly becoming a net importer of electricity (nuclear phase-out)

Due to Austria’s unique situation in the heart of Europe, it will be key to monitor developments in neighbouring countries (which overall face the same pressures of electrification, RES-integration and SoS)
Key take-aways
What needs to be done in order to ensure security of supply?

Action on no-regret measures: Grid expansions needs to be accelerated in order to allow renewables to be integrated into the system. Transmission grid is the key towards diversification of electricity supply and hence central to risk mitigation.

Ensuring security of supply: Efforts towards monitoring of security of supply will need to be intensified. Assessment of market design options will be necessary. Hence, APG is establishing a process for **national resource adequacy monitoring** (on top of existing European processes).

Integrated and holistic planning: New planning instruments are needed to achieve security of supply at optimal costs. Key is increased coordination among actors to allow for energy exchanges across sectors in real-time.